El análisis de minería de datos puede ser un proceso útil que proporciona diferentes resultados según el algoritmo específico utilizado para la evaluación de datos. Los tipos comunes de análisis de minería de datos incluyen análisis de datos exploratorios (EDA), modelado descriptivo, modelado predictivo y descubrimiento de patrones y reglas. La utilización de cada una de estas herramientas de minería de datos proporciona una perspectiva diferente sobre la información recopilada. Los profesionales que utilizan estas técnicas pueden adquirir información adicional sobre un tema o problema de interés en función de la herramienta de análisis específica utilizada.
Debido a los diferentes resultados que brindan las herramientas de análisis de minería de datos cuando se emplean, es pertinente considerar una revisión básica de cada uno. El análisis de datos exploratorios, o EDA, implica la revisión de un conjunto de datos sin ningún objetivo de resultado claro para el examen. Las variables que definen los datos se utilizan como base para proporcionar representaciones visuales al investigador. A medida que aumenta el número de variables, esta herramienta de análisis puede volverse menos eficaz para visualizar datos.
El modelado descriptivo es una herramienta de análisis de minería de datos que se utiliza para describir colectivamente todos los datos de un conjunto de datos determinado. Específicamente, este enfoque sintetiza todos los datos para proporcionar información sobre tendencias, segmentos y grupos que están presentes en la información buscada. El análisis descriptivo de minería de datos se usa comúnmente en publicidad. Un ejemplo de esto es la segmentación del mercado en la que los especialistas en marketing toman grupos de clientes más grandes y los segmentan por características homogéneas.
Otras herramientas también incluyen el modelado predictivo. El modelado predictivo implica el desarrollo de un modelo basado en datos existentes. Luego, el modelo se utiliza como base para la predicción de otra variable que sea relevante para los datos revisados. El término «predictivo» indica que esta herramienta de minería de datos puede permitir al usuario predecir algún valor basado en lo que se conoce en el conjunto de datos. Los especialistas en marketing pueden utilizar el análisis predictivo para determinar qué productos buscan los clientes. Según las tendencias de compra actuales, los especialistas en marketing pueden hacer predicciones sobre qué productos nuevos pueden ser populares en el futuro.
Descubrir patrones y reglas difiere de las herramientas de minería de datos descriptivas y predictivas. Si bien las herramientas descriptivas y predictivas emplean la construcción de modelos como base para el análisis, el descubrimiento de patrones y reglas se centra en la identificación de patrones en los datos. Los especialistas en marketing que trabajan para tiendas de comestibles, por ejemplo, a menudo utilizan esta herramienta de análisis de minería de datos como un medio para determinar los patrones de compra. Al determinar qué productos compran los clientes constantemente en el mismo pedido, se pueden desarrollar promociones específicas para los artículos.